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Original problem. PID

Original problem: Particle Identification (PID)

{Electron, Proton, Muon, Kaon, Pion} + ”Ghost” - 6 classes
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Baseline

6x shallow DNNs (TMVA based baseline):

6 binary classifiers (trained in one-vs-all mode)
32-34 input features for each binary classifier
each classifier is dense neural network with 1 hidden layer
complexity for each one is following ”Number of neurons in hidden layer”
= 1.4 * ”input features count”
∼ 9200 trainable parameters in total

Single 6 outputs DNN (initial proposal):

single multiclass classifier as alternative for 6 binary classifiers of baseline
1 hidden layer with 150 neurons
same complexity (∼ 9200 parameters) and speed as baseline provides
(?) 59 input features

Problem: Reach maximum neural network’s prediction speed at the given
quality (ROC AUC)
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Speed-up 1DNN. Approach 1 (the worse solution)

Speed-Up Idea 1 Try different NN architecture configurations and
evaluate speed and quality for each one
Drawbacks

Pointwise estimation. Random walk in hope to find best
configuration. Not so precise as it could be using narrow optimization
algorithms

Too long. ∼ 12 hours to train each NN configuration. Usually you
have at least 10 ”candidates” for best configuration role!

lots of redundant code
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Speed-up baseline. More advanced techniques

Idea 2 Train DNN only once and drop all the redundant connections after
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Speed-up 1DNN. Approach 2 (better solution)

Speed-Up Idea 2 Try to use more advanced techniques

L1-pruning

Idea train NN with L1-regularization term and drop connections with
small weights from time to time

SVD

Idea k-rank approximation using Singular Value Decomposition (SVD):
θ ≈ UTΛV (θ - trainable weights)

Ternary trainable quantization

Idea Transform each layer’s weight to 3 possible values: {θ+, 0, θ−}
Common pros

much faster than bruteforce
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Idea 2. Post-pruning

Common problem

loss of quality and information
still lot’s of code
small speed-up (up to 2-5 times)

A. Ryzhikov (HSE, YSDA) Variational Dropout Sparsification for Particle Identification speed-upQFTHEP, 2019 7 / 13



Idea 3. Variational dropout

Idea: Find useless connections variating its weights at the specified
range/distribution and look how the quality changes

Alternative idea: Drop all the connections with wide weight’s
distribution, if such distribution is proper one!
Problem: How to fit proper weight’s distribution for each connection?
Simplest solution: Let each connection’s distribution to be gaussian with
specific trainable µ and σ (variational parameters).
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Idea 3. Technical details

Classic ML General idea - maximum likelihood
θFtrain = argmaxθp(Xtrain|θ,F) (pointwise estimation of trainable
parameters θ at given configuration F)

Bayes ML General idea - estimate the whole distribution p(θ|Xtrain,F)
for parameters θ instead of pointwise estimation θFtrain of them

Bayesian inference p(θ|X ,F) = p(X |θ,F)p(θ|F)∫
p(X |θ,F)p(θ|F)dθ

= p(X |θ,F)p(θ|F)
p(X |F)

p(X |F) - probability to observe the given data X with the given NN
configuration F of neural network!
Idea - the higher p(X |F) (evidence) the better NN configuration F is!
Problem - how to optimize evidence p(X |F) over F? F is discrete!
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Idea 3. Technical details. ELBO

log(p(X |F)) = L(qφ) + KL[qφ(θ|F)||p(θ|X ,F)]
L(qφ) = Eqφ log(p(X |θ,F))− KL[qφ(θ|F)||p(θ)] - evidence lower bound
Notation:

KL - Kullback-Leibler divergence

qφ(θ) - auxilary parametrized distribution over trainable weights (θ)

Interesting fact In discrete case L(qφ) is -(cross entropy + regularizer)!
Idea: Instead of estimating and maximizing log(p(X |F)) over discrete F
directly let’s maximize the lower bound over continuous φ!

Illustration of qφ
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Results

Evaluation criterium maximum speed with no significant quality
reduction (Python 3.6)

Method # Neurons Electron Ghost Kaon Muon Pion Proton Speed-Up

6xDNN 45-48 0.9855 0.9485 0.9148 0.9844 0.9346 0.9178 x1

1xDNN 150 0.9863 0.9570 0.9145 0.9889 0.9463 0.9167 x1

1xDNN 30 0.9871 0.9557 0.9158 0.9893 0.9427 0.9125 x5

Ternary Auto 0.9843 0.9435 0.9154 0.9834 0.9352 0.9110 x5

BDNN Auto 0.9881 0.9548 0.9244 0.9896 0.9509 0.9228 x16

Pre-conclusion

best NN configuration (in terms of ROC AUC and speed) is
automatically found!

x16 speed-up (Python vs. Python), x7.5 speed-up (C++ vs. C++)

... moreover, the quality is getting slightly better! (Besides the Ghost,
where the quality is comparable)
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Usage

Baseline implementation Bayesian NN implementation

Source code: https://github.com/HolyBayes/pytorch ard
Installation: pip install pytorch-ard
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Conclusion

Leading methods for NN’s sparsification and speed-up were tested
Bayesian Sparsification is the best: x16 (Python), x7.5 (C++)
Can be applied to almost any problem
Finds the best NN configuration with no overfitting
Uncertainty estimation for free! [4], [5]
Integrated with LHCb software
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LHCb detector
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Intuition

Intuition of the results - Finding global optimum with complex model
(containing both ”x” and ”y” parameters) with further dropout of some
parameters (”x” for instance) is better that finding global optimum with
initially simplified model with ”y” parameter only!
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